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Abstract

This paper investigates the nonlinear dynamics of a fluid-conveying curved pipe subjected to motion constraints and

harmonic excitation. At first, the background theory for curved pipes conveying fluid with motion constraints is presented.

Then, emphasis is placed on the possible nonlinear dynamic behaviors of a constrained curved pipe subject to a harmonic

excitation. For such a forced dynamical system, calculations of bifurcation diagrams, phase-plane portraits, time

responses, power spectrum diagrams and Poincare maps of the oscillations clearly establish the existence of the chaotic

motions and quasi-periodic motions. Moreover, it is found that the route to chaos is through a sequence of period-

doubling bifurcations. Finally, the difference in the nonlinear dynamics between the self-vibration system and forced

system is further discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration problem of a curved pipe conveying fluid has been investigated to a great extent in the past
decades. Work on this topic appears to have started in the 1960s. The pioneering works on the stability of
curved pipes conveying fluid concentrated on the linear problems [1]. The literature on the nonlinear
vibrations of fluid conveying curved pipes is quite limited. Perhaps the earliest study on the nonlinear problem
for the curved pipe was by Ko and Bert [2]. Subsequently, Ko and Bert [3] considered the first-order nonlinear
interaction between the pipe structure and the flowing fluid and formulated the governing equations of motion
for the in-plane vibrations of a circular-arc pipe containing flowing fluid. A notable work done by Dupuis and
Rousselet [4] derived the nonlinear differential equations of motion of a fluid-conveying pipe by making use of
the Newtonian approach. Recently, Ni et al. [5] investigated a fluid-conveying curved pipe with demisemi-arc
shape. It should be noted that this curved pipe was placed on nonlinear foundations. Based on numerical
analysis, three final steady states were detected, and chaotic transients found, as a function of the flow velocity
parameter. More recently, Ni et al. [6] developed a fluid-conveying curved pipe model subject to motion
constraints placed arbitrarily along the pipe axis. It was shown that chaotic motions may occur at sufficiently
high flow velocities for such a self-vibration system.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The purpose of the present study is described as follows. First, the background theory for a fluid-conveying
curved pipe with motion constraints will be given. This constrained pipe model corresponds to a self-vibration
system. Second, the nonlinear behaviors for a self-vibration pipe system will be investigated, both for
symmetric and asymmetric constraints. Third, the forced pipe system with motion constraints will be analyzed
in detail. In the forced system, the curved pipe is subject to a harmonic excitation at the free end of the pipe.
Fourth, the difference in the nonlinear dynamics between the self-vibration system and forced system will be
further discussed.
2. Background theory

Consider a simple curved pipe system as shown in Fig. 1(a). This circular fluid-conveying curved pipe is
subject to symmetric constraints placed arbitrarily along the pipe axis. It is noted that this pipe model has been
developed in the study by Ni et al. [6]. In that paper, the curved pipe has a constant center-line radius R to a
fixed geometric center of curvature at point O, as shown in Fig. 1(a). The motion constraints are placed at an
angle yc as measured from the reference x-axis. Obviously, this pipe model corresponds to a self-vibration
system. The analytical model consists of a curved pipe having a mass per unit length mp, effective flexural
rigidity EI, internal perimeter S, the internal cross-sectional area A and subtended angle y0. Moreover, the
fluid is taken to be incompressible and in laminar flow with a mass per unit length mf, and constant velocity V.
The fluid pressure is denoted by p.

This may be a common pipe model, used as a typical structural element in engineering practice. However,
the pipe will impact on the motion constraints when the pipe is vibrating. The effect of the motion constraints
can be written as a cubic-spring restraining force (see Ref. [6]). For the in-plane vibrational motion of such a
fluid–structure system, u and w correspond to the radial deflection and tangential displacement of the curved
pipe, respectively. Hence, by assuming that there is no extension of the centerline of the curved pipe, the
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Fig. 1. Schematic of the self-vibration curved pipe system: (a) symmetric constraints and (b) asymmetric constraints.
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equation of motion for such a curved pipe can be written in dimensionless form as follows [6]:
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in which the dimensionless parameters are

x ¼ w=R; Z ¼ u=R; B ¼ y=y0; b ¼ mf =ðmf þmpÞ; v ¼ ðmf =EIÞ1=2RV ,

t ¼ ½EI=ðmf þmpÞ�
1=2t=R2; k ¼ KðR6=EIy50Þ; Bc ¼ yc=y0.

In the above equation, K is the stiffness of the cubic spring which represents the effect of the motion
constraints. It is noted that, compared with the linear equation of motion derived by Chen [7], the only
nonlinearity in Eq. (1) is associated with the nonlinear constraints; hence, Eq. (1) should be valid only
provided that the pipe motions are not too large. Another aspect is that this equation does not take into
account the effect of steady-state axial tension and pressure that may cause a steady-state deformation of the
curved pipe. Since the boundary conditions are clamped-free conditions, the steady-state axial tension-
pressure force has a less pronounced effect on a clamped-free curved pipe [8,9]. Therefore, the use of Eq. (1)
can reasonably capture the main characteristics of the cantilever system. One can also see the book by
Paidoussis [1], which contains extensive discussion of various issues related to the modeling of fluid-conveying
curved pipes.

Based on numerical calculations, Ni et al. [6] have detected the possible chaotic motions once the flow
velocity is sufficiently above the threshold for flutter about the buckled state. Hence, the curved pipe model
shown in Fig. 1(a) can display interesting dynamical behaviors.

Besides the case for the curved pipe with symmetric constraints (Fig. 1(a)), another curved pipe system with
asymmetric constraints is also considered in this work, as shown in Fig. 1(b). The equation of motion for the
curved pipe with asymmetric constraints can be derived by utilizing the same method (Newtonian method)
given in Ref. [6]. This equation is

1

y60

q6x
qB6
þ ð2þ v2Þ

1

y40

q4x
qB4
þ ð1þ 2v2Þ

1

y20

q2x
qB2
þ v2xþ 2b1=2v

1

y30

q4x
qt qB3

þ 2b1=2v
1

y0

q2x
qt qB

þ
1

y20

q4x
qt2 qB2

�
q2x
qt2
þ 3 k

q2x
qB2

qx
qB
� e

� �2
" #

dðB� BcÞ þ k
qx
qB
� e

� �3
" #

qdðB� BcÞ

qB
¼ 0 ð2Þ

where e ¼ ðy0=RÞê, and ê denotes the offset of the asymmetric constraints (see Fig. 1(b)).
3. The forced curved pipe system

In this section, a semicircular fluid-conveying curved pipe is considered, as shown in Fig. 2. There exists a
harmonic excitation at the free end of the pipe. We assume that the harmonic excitation has the following
form:

F ¼ D cosðOtÞ. (3)

For this forced system, the governing equation is the same as that represented by Eq. (2). The solution of
this equation is associated with the boundary conditions of the pipe system. It is noted that the boundary
conditions of the forced system are different from that of the self-vibration system. Let ~c, ~N, ~M, and ~Q be the
angle of rotation, axial force, bending moment and transverse shear force, respectively. For this forced pipe
model, the boundary conditions to be satisfied are as follows:at the fixed end (y ¼ 0):

u ¼ w ¼ 0; ~c ¼
qu

R qy
¼ 0, (4)
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Fig. 2. Schematic of the forced-vibration curved pipe system.
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at the free end (y ¼ p):
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Note that the term on the right-hand side of Eq. (6), D cos(Ot), denotes the harmonic excitation at the free-
end of the pipe. Thus the above boundary conditions can be rewritten as the dimensionless form:
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where d ¼ DR3/EI and o ¼ [(mf+mp)/EI]1/2R2O.

4. Discretization of the fluid-conveying curved pipe

In this section, the differential quadrature method (DQM) will be introduced to discretize the equations of
the pipe model. The differential quadrature technique approximates the partial derivative of a function with
respect to a space variable at a given discrete point as a weighted linear sum of the function values at all
discrete points in the domain of that variable. This is in contrast to the finite difference method in which a
solution value at a point is a function of values at adjacent points only. Even if the finite difference method is
of high enough order to cover all points on the grid, a fundamental difference remains in that the method of
differential quadrature is a polynomial fitting, while the higher-order finite difference method is a Taylor series
expansion. Mathematically, the application of the differential quadrature method to a partial differential
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equation can be expressed as follows:
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where L denotes a differential operator, k is kth order of derivative, xj(j ¼ 1,2,y,N) are the discrete points
considered in the domain, f(xj) are the function values at these points, A

ðkÞ
ij are the weighting coefficients

attached to these function values, and N denotes the number of discrete points in the domain. Note that the
weighting coefficients have been given by Bert and Malik [10].

For the curved pipe, the discrete points are in the domain of B. By using the following method to discretize
B(0pBp1), one obtains the unequally spaced sampling points with three adjacent D-points (D ¼ 10�6–10�3) at
the two boundary ends, namely
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For simplicity, the motion constraints are applied at the point where c ¼ N�3. Applying the DQM to
Eqs. (1) and (2) yields
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The boundary conditions of the forced pipe, given by Eqs. (8)–(11), can be expressed in the differential
quadrature form as follows:
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Hence, by rearranging Eqs. (14b)–(18), an assembled form of the dynamic motion equation is given as
follows:

½M�f€xg þ ½G�f_xg þ ½K�fxg ¼ fQg, (19)
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in which {x}, f_xg, and f€xg are the structural displacement, velocity, and acceleration vectors, respectively; [M],
[G], [K], and [Q] denote the structural mass matrix, damping matrix, stiffness matrix, and forcing vector,
respectively. The matrix elements of [G] and [K] are the functions of dimensionless fluid speed v and mass ratio
b. In addition, [K] can be written as

½K� ¼ ½Kl � þ ½Knl �, (20)

where [Kl] and [Knl] are the linear and nonlinear terms of [K], respectively. Obviously, all the elements of [M],
[G], [K], and [Q] can be obtained directly from Eqs. (14b)–(18). Eq. (19) is the nonlinear dynamic equation of
motion for the curved pipe conveying fluid. By solving this equation one can determine the dynamic behavior
of the curved pipe with specific values of system parameters.

It should be noted that, as mentioned previously, the tangential displacement and the radial displacement of
the curved pipe are inter-related. If the time response of the tangential displacement is determined by solving
Eq. (19), the radial displacement can be obtained by the following relationship:

Zi ¼
XN

k¼1

A
ð1Þ
ik xk ði ¼ 1; 2; . . . ;NÞ. (21)
5. Numerical analysis

In this section, it is of interest to investigate, in detail, what behaviors may occur when several parameter
values are varied. For this purpose, the Newmark method and Newton–Raphson iterative technique were used
to develop the procedure for such a fluid–structure interaction system governed by Eq. (19). Attention will be
concentrated on the nonlinear dynamics of the constrained curved pipe, both without and with a harmonic
excitation.

5.1. Without forcing function

In the nonlinear analysis, the nonlinear dynamics with no forcing function will be analyzed first, for the
pipes with symmetric and asymmetric constraints. For this purpose, the bifurcation diagram is constructed
based on numerical calculations. Construction of bifurcation diagrams is a standard approach used to analyze
nonlinear systems. It provides a summary of essential dynamics and is therefore a useful tool for acquiring the
overview.
Fig. 3. Bifurcation diagram for the tip displacement of the nonlinear system defined by Eq. (22), as fluid speed is varied.
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Calculations have produced the bifurcation diagram of Fig. 3 for a set of system parameters defined as
follows:

b ¼ 0:5; k ¼ 1000; Bc ¼ 0:854; N ¼ 12; d ¼ 0:0; o ¼ 0; e ¼ 0. (22)

In the bifurcation diagram, the displacement plotted in the ordinate is the amplitude of the free-end
displacement of the pipe. In the calculations, for clarity, the transient solutions were discarded. Then,
whenever the free-end velocity, _xð1; tÞ, was zero, the displacement at the free end was recorded, as shown in
Fig. 3. In this figure, the varied parameter is the dimensionless fluid speed v, and all the other parameters are
defined by Eq. (22). From the bifurcation diagram, one can see that the solution of Eq. (19) corresponds to a
steady-state solution when fluid speed is lower than vc ¼ 0.2383. It should be mentioned that, in the case of a
low fluid speed, perhaps the system settles down onto one of the constraints with a negative static deflection
(see Fig. 3). This phenomenon has also been observed experimentally in straight pipes conveying fluid [11].
However, when the fluid speed increases to vc ¼ 0.2383, an oscillatory motion can be detected. Furthermore,
the amplitude of the oscillatory motion increases with increasing fluid speed. For a higher v, a sequence of
period-doubling bifurcations can be detected. In Fig. 4(b–d), the period-1, -2, and chaotic motions are shown
in the form of phase-plane portraits with various fluid velocities.

However, if the motion constraints are asymmetric (e 6¼0), it is found that the effect of the offset of the
constraints on the dynamics of the pipe system is significant. Sample results are shown in Fig. 5. It is seen that
the threshold vc for the oscillatory motion is varied with various values of e.

For more details on the period-doubling bifurcations and chaos of this self-vibration system, one can refer
to the foregoing study [6].
Fig. 4. Phase-plane plots of the free-end deflection of the pipe, for the system of Fig. 3, and various values of v: (a) v ¼ 0.22, (b) v ¼ 0.29,

(c) v ¼ 0.295, and (d) v ¼ 0.304.



ARTICLE IN PRESS
W. Lin et al. / Journal of Sound and Vibration 306 (2007) 955–967962
5.2. With forcing function

5.2.1. Bifurcation diagram

In the foregoing, the system with no forcing function was investigated, and the bifurcations and several
motions were discussed. However, if the nonlinear system is subject to a harmonic excitation, this modified
system may display much richer dynamics.

Similar bifurcation diagram (Fig. 6) may be constructed for a set of system parameters defined as follows:

b ¼ 0:5; k ¼ 1000; Bc ¼ 0:854; N ¼ 12; d ¼ 0:005; o ¼ 1; e ¼ 0. (23)

The remains of this section from this point, various dynamical behaviors shown in Fig. 6 will be discussed in
detail. Obviously, in the results presented in Fig. 6, the harmonic excitation is a nonzero force. Except the
forcing amplitude and frequency, all the other parameters utilized are the same as those defined by Eq. (22).
From the bifurcation diagram, it is observed that, the varied parameter is the dimensionless fluid speed. It is
seen that the curved pipe can display interesting dynamical behaviors, including chaotic, periodic, and quasi-
periodic motions. However, the bifurcation diagram cannot distinguish chaotic responses from quasi-periodic
ones.
Fig. 5. The critical flow velocity with various values of e.

Fig. 6. Bifurcation diagram for the tip displacement of the nonlinear system defined by Eq. (23), as v is varied.
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Fig. 7. Phase-plane plots of the free-end deflection of the pipe, for the system of Fig. 5, and various values of v: (a) v ¼ 0.05, (b) v ¼ 0.068,

(c) v ¼ 0.078, (d) v ¼ 0.082, (e) v ¼ 0.088, (f) v ¼ 0.098, (g) v ¼ 0.104, (h) v ¼ 0.106, (i) v ¼ 0.130, (j) v ¼ 0.220, (k) v ¼ 0.240, (l) v ¼ 0.260,

(m) v ¼ 0.270, and (n) v ¼ 0.290.

W. Lin et al. / Journal of Sound and Vibration 306 (2007) 955–967 963
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Fig. 7. (Continued)
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5.2.2. Several dynamic motions

As mentioned in the foregoing, the vibration of the pipe undergoes complicated bifurcations as a function of
v. In the following, it is instructive to look at several typical motions of the pipe system. For this purpose, the
phase-plane portraits were constructed (see Fig. 7). It is seen in Fig. 7(a) that the trajectory is a stable
oscillatory motion, which is asymmetric. The remaining parts of Fig. 7, show the following: (b), (d), (h), and
(l)–(n) show chaotic motions with various values of v; (c), (e), (f), (g), (i), and (j) show, respectively, period-6, -
3, -4, -8, -2, and -2 motions; (k) shows a quasi-periodic motion. The time responses, power spectrums and
Poincare maps of several notable motions are shown in Figs. 8–10.

If the forcing frequency (o) is chosen to be the variable parameter, and other parameters are fixed as
defined in the foregoing and v ¼ 0.270, quasi-periodic and chaotic motions can be found. Moreover, these
two motions are detected to occur alternately as o is varied continuously. Sample results are shown in
Fig. 11.
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Fig. 9. Power spectrums of the vibration, for the system of Fig. 5: (a) v ¼ 0.240 and (b) v ¼ 0.270.

Fig. 8. Time responses for the free-end displacement of the pipe, for the system of Fig. 5. (a) v ¼ 0.05, period-1 motion; (b) v ¼ 0.1046,

period-16 motion; (c) v ¼ 0.240, quasi-periodic motion; (d) v ¼ 0.270, chaotic motion.

W. Lin et al. / Journal of Sound and Vibration 306 (2007) 955–967 965
5.2.3. The route to chaos

In the numerical calculations, it is found that, as the parameter of v varies from a very small value to a
reasonably large one, chaotic motions occur as the result of one route. From the bifurcation diagram, it can be
seen that when the value of v varies in the range 0.09ovo0.1062, a sequence of period-doubling bifurcations is
detected, leading to a chaotic regime finally.
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Fig. 11. Phase-plane plots of the free-end deflection of the pipe, for the system defined by b ¼ 0.5, k ¼ 1000, Bc ¼ 0.854, N ¼ 12,

d ¼ 0.005, v ¼ 0.27, and various values of o. (a) o ¼ 3.0, chaotic motion; (b) o ¼ 10.0, quasi-periodic motion; (c) o ¼ 11.0, chaotic

motion; (d) o ¼ 12:0, quasi-periodic motion.

Fig. 10. Poincare maps for the free-end displacement and velocity, for the system of Fig. 5: (a) v ¼ 0.240 and (b) v ¼ 0.270.

W. Lin et al. / Journal of Sound and Vibration 306 (2007) 955–967966
6. Discussion and conclusions

In this work, the nonlinear dynamics of a fluid-conveying curved pipe subjected to motion constraints
(symmetric or asymmetric) and harmonic excitation has been investigated. Particular attention is concentrated
on the possible existence of chaotic oscillations and several other interesting motions.
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The equation of motion is discretized by differential quadrature method and then the nonlinear second-
order ordinary differential equation system of Eq. (19) is numerically solved by Newmark method and
Newton–Raphson iterative technique. Two variants of the basic system were considered, respectively. One is a
curved pipe system with motion constraints and a harmonic excitation, another one is a curved pipe system
with motion constraints but without harmonic excitation. Construction of bifurcation diagrams with the fluid
speed v as parameter has shown that chaotic motions do indeed occur in the nonlinear system, both for the
systems with and without harmonic excitation. The route to chaos is shown to be following a sequence of
period-doubling bifurcations. However, for the forced pipe system, quasi-periodic motions may occur.
Particularly, the curved pipe with harmonic excitation may undergo chaotic motions even if the flow velocity is
very low (e.g., v ¼ 0.082). Therefore, there exist strong contrasts between these two variants of the curved pipe
system.

Thus, the analytical curved pipe model developed here is remarkably simple, and the numerical simulations
are easy to implement. However, this system offers the potential for further and more profound theoretical
and experimental studies into unexplored aspects of its dynamical behavior—which are currently being
investigated.
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